前面不是寫了一个將 SCI 文獻的 PDF 轉換為 Markdown 格式的工具,現在這個工具是為了完善工具鏈寫出來的,轉換完就可以馬上將文獻翻譯成中文。
首先安裝依賴
pip install openai
業務代碼如下:
import openai
import json
import logging
from concurrent.futures import ThreadPoolExecutor, as_completed
# 設置日誌記錄
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class MarkdownTranslator:
def __init__(self, config_file):
self.config = self.load_config(config_file)
openai.api_key = self.config.get('OPENAI_API_KEY')
openai.base_url = self.config.get('OPENAI_API_BASE')
openai.default_headers = {"x-foo": "true"}
# 從配置文件獲取OpenAI API密鑰和自定義伺服器地址
def load_config(self, config_file):
try:
with open(config_file, 'r', encoding='utf-8') as file:
config = json.load(file)
return config
except Exception as e:
logging.error(f"Error reading config file {config_file}: {e}")
raise
# 讀取Markdown文件
def read_markdown(self, file_path):
try:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
except Exception as e:
logging.error(f"Error reading file {file_path}: {e}")
raise
# 將翻譯後的內容寫入新的Markdown文件
def write_markdown(self, file_path, content):
try:
with open(file_path, 'w', encoding='utf-8') as file:
file.write(content)
except Exception as e:
logging.error(f"Error writing file {file_path}: {e}")
raise
# 翻譯函數
def translate_text(self, text, source_lang='en', target_lang='zh'):
try:
response = openai.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": f"請將以下{source_lang}文本翻譯成{target_lang}:\n{text}"
}
]
)
return response.choices[0].message.content.strip()
except Exception as e:
logging.error(f"Error translating text: {e}")
return text # 返回原文以防止翻譯失敗
# 處理Markdown內容
def process_markdown_content(self, content, source_lang, target_lang):
lines = content.split('\n')
translated_lines = []
def translate_line(index, line):
if line.strip(): # 忽略空行
translated_line = self.translate_text(line, source_lang, target_lang)
translated_lines.append((index, translated_line))
else:
translated_lines.append((index, '')) # 保持空行
with ThreadPoolExecutor(max_workers=10) as executor:
futures = [executor.submit(translate_line, i, line) for i, line in enumerate(lines)]
for future in as_completed(futures):
future.result() # 等待所有線程完成
# 按原始順序排序
translated_lines.sort(key=lambda x: x[0])
return '\n'.join(line for _, line in translated_lines)
# 翻譯文件
def translate_file(self, input_file, output_file, source_lang='en', target_lang='zh'):
# 打印參數
logging.info(f"Translating file from {source_lang} to {target_lang}...")
logging.info(f"OpenAi_key: {openai.api_key}")
logging.info(f"OpenAi_base: {openai.base_url}")
# 讀取原始Markdown文件
markdown_content = self.read_markdown(input_file)
# 處理並翻譯內容
translated_content = self.process_markdown_content(markdown_content, source_lang, target_lang)
# 寫入新Markdown文件
self.write_markdown(output_file, translated_content)
if __name__ == "__main__":
# 輸入和輸出文件路徑
input_file_path = 'input.md' # 輸入的Markdown文件
output_file_path = 'output.md' # 輸出的Markdown文件
# 可選的源語言和目標語言
source_language = 'en' # 源語言(默認為英文)
target_language = 'zh' # 目標語言(默認為中文)
translator = MarkdownTranslator('config.json')
translator.translate_file(input_file_path, output_file_path, source_language, target_language)
config.json 文件內容如下:
{
"OPENAI_API_KEY": "your_openai_api_key",
"OPENAI_API_BASE": "https://api.openai.com" # 可以用滿足OpenAI API格式的自定義伺服器地址
}
這個工具的使用方法也很簡單,只需要指定輸入的 Markdown 文件路徑和輸出的 Markdown 文件路徑,以及可選的源語言和目標語言,就可以將 Markdown 文件中的英文內容翻譯成中文。